- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Kunhung_Tsai, Benson (2)
-
Shen, Jianan (2)
-
Wang, Haiyan (2)
-
Zhang, Yizhi (2)
-
Zhou, Shiyu (2)
-
A_Mihalko, Claire (1)
-
Barnard, James_P (1)
-
Choudhury, Abhijeet (1)
-
Dion_Neal, Amirr (1)
-
Hu, Zedong (1)
-
Huang, Jialong (1)
-
Lu, Ping (1)
-
Mihalko, Claire_A (1)
-
Pan, Wei (1)
-
Paul, Debargha (1)
-
Quigley, Lizabeth (1)
-
Zhang, Xinghang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
An epitaxial NbN–Co VAN thin film was deposited on a MgO substrate with a cubic NbN phase, which presents ferromagnet properties with strong out-of-plane magnetic anisotropy. This hybrid metamaterial could find future applications in device design.more » « lessFree, publicly-accessible full text available June 30, 2026
-
Kunhung_Tsai, Benson; Huang, Jialong; Shen, Jianan; Zhang, Yizhi; Barnard, James_P; Mihalko, Claire_A; Choudhury, Abhijeet; Zhou, Shiyu; Wang, Haiyan (, Advanced Engineering Materials)The unique redox properties and high oxygen capacity of nanostructured CeO2demonstrate a wide range of applications, such as electrolytes for solid oxide fuel cells, gas sensors, and catalysis for automotive exhaust gas. Most CeO2nanomaterials are prepared by chemical synthesis or hard templating methods. An effective way to obtain highly textured, small‐radius dimensions with high specific surface area remains challenging. Here, highly textured CeO2nanostructures with various shapes ranging from nanowires to nanoporous thin films are successfully synthesized. Vertically aligned nanocomposites (VANs) of Sr3Al2O6(SAO) and CeO2are synthesized first while varying concentration ratio between them. Once the SAO is dissolved in water, the remaining CeO2forms distinct nanostructures. The thermal stability of the nanostructured CeO2is evaluated byin situheating XRD and thermal annealing tests. This method provides an alternative approach to preparing nanostructured CeO2without toxic chemical solutions or complex micro/nanofabrication techniques. These results present a novel approach to prepare nanostructured CeO2for future sensing and energy device applications.more » « less
An official website of the United States government
